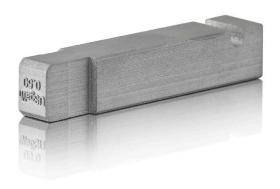
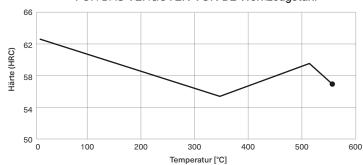


D2


WERKZEUGSTAHL

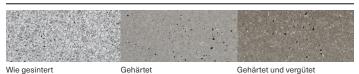
D2 ist ein lufthärtender Werkzeugstahl mit hervorragender Härte und Abriebfestigkeit, der dennoch eine moderate Zähigkeit aufweist.


Es wird hauptsächlich für Schneid- und Umformwerkzeuge wie Scheren, Stempel, Matrizen und Stanzwerkzeuge verwendet. Dieses Material bleibt bei allen Wärmebehandlungen stabil, sodass eine Feinabstimmung der Endeigenschaften nach dem Sintern möglich ist.

Zusammensetzung	Gewicht in %	
Eisen	Rest	
Kohlenstoff	1,5	
Silicium	0,3	
Mangan	0,5	
Vanadium	0,9	
Molybdän	1	
Chrom	12	

Funktionen und Vorzüge	
Hohe Abriebfestigkeit und Zähigkeit	
Ausgezeichnet härtbar	
Ausgezeichnet zum Schneiden und Formen von Metall geeignet	

HÄRTEKURVE FÜR FÜR DAS VERGÜTEN VON D2 Werkzeugstahl



^{*}Zugehörige Normen: UNS T30402, ASTM A681, 1.2379 und SKD11

Dichte	Härte (HRC)
Relative	98%
Wie gesintert	35
Gehärtet	62
Gehärtet und vergütet	58

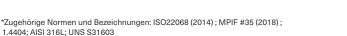
*Das Härten besteht aus einer Behandlung in einer Lösung mit anschließender Abschreckung mit Luft. Eine einfache Vergütung liefert die gezeigten Ergebnisse.

Metallographische Struktur

Proben mit nachfolgenden Prozessschritten, von unten nach oben: wie gesintert, nach dem Härten, nach dem Vergüten und nach dem Strahlen.

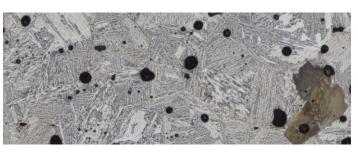
4140

NIEDRIG LEGIERTER STAHL


4140 ist ein niedrig legierter Stahl mit hoher Festigkeit, Härtbarkeit und Zähigkeit. Dieser Stahl wird häufig für die Herstellung von Zahnrädern, Riemenscheiben und Befestigungselementen in der Automobil- und Maschinenbauindustrie verwendet, wo präzise und starke Komponenten erforderlich sind.

Er lässt sich außerdem einfach bearbeitet und schweißen, und zur Verbesserung seiner mechanischen Eigenschaften kann er wärmebehandelt werden.

Zusammensetzung	Gewicht in %
Eisen	Rest
Chrom	1,0
Molybdän	0,2
Mangan	0,7
Silicium	0,3
Kupfer	0,4


Funktionen und Vorzüge		
Härtbar		
Hohe spezifische Festigkeit		
Hohe Schlag- und Abriebfestigkeit		

Physikalische Eigenschaften	Wie gesintert	Wie A+H*
Spezifische Zugfestigkeit [MPa]	880	1600
Streckfestigkeit (MPa)	640	1400
Dehnung [%]	6	3
Härte [HRC]	95 (HRB)	47 (HRC)
Relative Dichte [%]	96	96

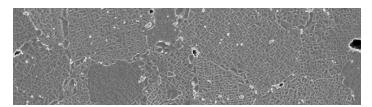
M247

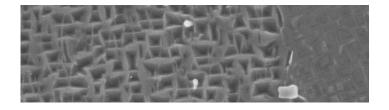
NICKEL-SUPERLEGIERUNG

M247 ist eine hochleistungsfähige Superlegierung auf Nickelbasis mit außergewöhnlichen thermomechanischen Eigenschaften.

Der Werkstoff ist IN625 und IN718 sehr ähnlich und zeichnet sich durch eine bemerkenswerte Oxidationsbeständigkeit sowie eine hervorragende Festigkeit und Kriechbeständigkeit bei hohen Temperaturen aus.

Es eignet sich besonders gut für den Einsatz in anspruchsvollen Anwendungen wie in Triebwerken für die Luft- und Raumfahrt sowie Gasturbinen, Verbrennungs-/Abgassystemen, Turbopumpenlaufrädern und anderen ähnlichen Hochtemperaturumgebungen.


Zusammensetzung	Gewicht in %
Aluminium	5,4
Bor	0,012
Kohlenstoff	0,13
Kobalt	9,9
Chrom	8,3
Hafnium	1,3


Zusammensetzung	Gewicht in %	
Molybdän	0,66	
Nickel	Rest	
Tantal	3,0	
Titan	1,0	
Wolfram	9,8	
Zirkonium	0,05	

*Verwandte Zusammensetzungen: MAR-M 247™, René 108, CM247LC

Wie gesintert
1250
750
20
35
98

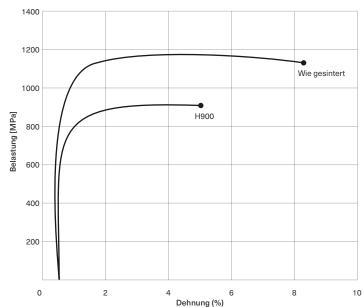
17-4PH

EDELSTAHL

17-4PH ist ein martensitischer, ausscheidungshärtender rostfreier Stahl mit hoher Festigkeit, Verschleißfestigkeit, Korrosionsbeständigkeit und Schweißbarkeit.

Dieses vielseitige Material wird in vielen Industriezweigen verwendet, beispielsweise in der Erdöl-, Chemie- und Luft- und Raumfahrtindustrie. Dort wird es vor allem für hochbelastbare Maschinenkomponenten, Kupplungen, Schrauben, Antriebswellen und Muttern eingesetzt. 17-4PH kann wärmebehandelt werden, um spezifische mechanische Anforderungen zu erfüllen.

Zusammensetzung	Gewicht in %	
Eisen	Rest	
Chrom	16,5	
Nickel	4	
Kupfer	3,5	


Funktionen und Vorzüge	
Hohe Festigkeit & Verschleißfestigkei	
Gute Korrosionsbeständigkeit	
Schweißbar	
Härtbar	

Physikalische Eigenschaften	Wie gesintert	
Spezifische Zugfestigkeit [MPa]	950	H900
Streckfestigkeit (MPa)	730	1250
Dehnung [%]	4	1100
Härte [HRC]	27	7
Relative Dichte [%]	98	38
		00

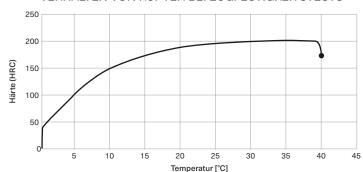
ZUGEIGENSCHAFTEN - WIE GESINTERT VS. H900

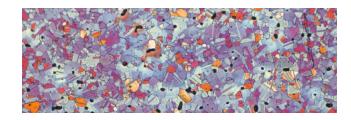
Kupfer

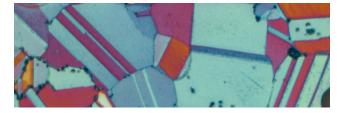
Kupfer ist ein zu 99,9 % kommerziell reines Material mit einer ausgezeichneten elektrischen und thermischen Leitfähigkeit.

Es wird hauptsächlich in der Elektronik, für Wärmetauscher, Kühlkörper, Motorenteile sowie viele verschiedene industriellen Anwendungen verwendet, die eine gute Leitfähigkeit erfordern.

Der Druck mit Kupfer bietet eine große Gestaltungsfreiheit und optimale Funktionalität mit wenigen Einschränkungen.


Funktionen und Vorzüge	
99,9 % reines Material	
Ausgezeichnete thermische und elektrische Leitfähigkeit	
Hohe Duktilität	


Zusammensetzung	Gewicht in %
Kupfer	99,9
Eisen	0,04
Nickel	0,015
Kohlenstoff	0,02
Sauerstoff	0,003
Sonstiges	Rest


Dichte	Härte (HRC)
Spezifische Zugfestigkeit (MPa)	195
Streckfestigkeit (MPa)	30
Dehnung [%]	35
Gesinterte Dichte [g/cm3]	8,6

VERHALTEN VON KUPTER BEI ZUGFESTIGKEITSTESTS

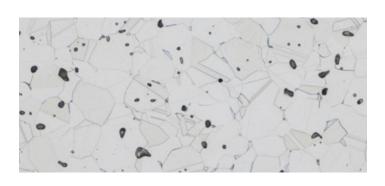
*LOM-Bilder - DM Cu geätzt mit Klemm's Reagenz und polarisiertem Licht

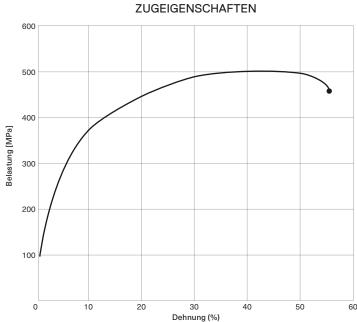
316L

EDELSTAHL

316L ist ein austenitischer rostfreier Stahl mit niedrigem Kohlenstoffgehalt mit hervorragender Korrosionsbeständigkeit und Duktilität.

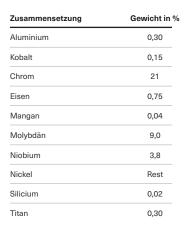
Es handelt sich um ein vielseitiges Material, das in einer Vielzahl von Anwendungen und Industriezweigen eingesetzt wird, u. a. in der Dental- und Medizintechnik, der Unterhaltungselektronik, der Luft- und Raumfahrt, der Schifffahrt und für Designertextilien.


Zusammensetzung	Gewicht in %	
Eisen	Rest	
Chrom	17	
Nickel	11	
Molybdän	2,2	
Kupfer	0,015	


Ausgezeic	hnete Korrosionsbeständigkeit
Oberfläch	e behandelbar

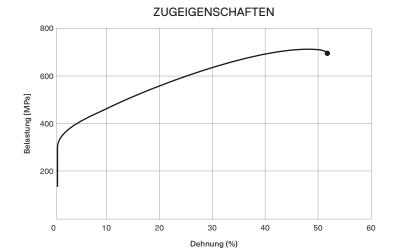
*Zugehörige Normen und Bezeichnungen: ISO22068 (2014) ; MPIF #35 (2018) ; 1.4404; AISI 316L; UNS S31603

Physikalische Eigenschaften	Wie gesintert
Spezifische Zugfestigkeit [MPa]	520
Streckfestigkeit (MPa)	180
Dehnung [%]	50
Härte [HRC]	55
Relative Dichte [%]	97



IN625

NICKEL-SUPERLEGIERUNG


IN625 ist eine hochleistungsfähige Superlegierung auf Nickelbasis mit hoher Zähigkeit und hervorragender Korrosionsbeständigkeit sowohl in oxidierenden als auch in reduzierenden Umgebungen. Es ist korrosionsbeständiger und kann mit höheren Temperaturen als IN718 eingesetzt werden, besitzt jedoch schlechtere mechanische Eigenschaften.

Das Material eignet sich gut für eine Vielzahl anspruchsvoller Anwendungen in der chemischen Verarbeitung, in der Luft- und Raumfahrt, in der Schiffstechnik, in der Energieerzeugung und in der Öl- und Gasindustrie. Das Material ist relativ schwer zu bearbeiten, was den 3D-Druck zu einer attraktiven Alternative macht.

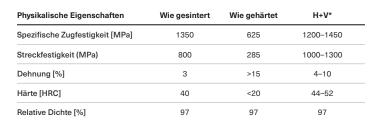
Ausgezeichnete	e Korrosionsbeständigkeit
Gute Stärke ur	nd Zähigkeit

Physikalische Eigenschaften	Wie gesintert
Spezifische Zugfestigkeit [MPa]	725
Streckfestigkeit (MPa)	325
Dehnung [%]	45
Härte [HRC]	82
Relative Dichte [%]	98

^{*}Zugehörige Bezeichnungen: UNS N06625, 2.4856 und NCF625

H13

WERKZEUGSTAHL


H13 ist ein leistungsfähiger Heißwerkzeugstahl mit ausgezeichneter thermischer Ermüdungsbeständigkeit, Härtbarkeit, Verschleißfestigkeit und Zähigkeit. Es wird im Allgemeinen für Warm- und Kaltbearbeitungswerkzeuge verwendet, eignet sich aufgrund seiner außergewöhnlichen Eigenschaften jedoch besonders gut für die Warmarbeitswerkzeuge.

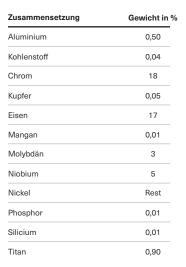
H13 ist härter und abriebfester als die meisten unlegierten und rostfreien Stähle, aber weniger hart als andere Werkzeugstähle wie D2. Die Kombination seiner Eigenschaften macht ihn zu einem vielseitigen und zuverlässigen Material für eine Vielzahl von Anwendungen.

Zusammensetzung	Gewicht in %
Eisen	Rest
Kohlenstoff	0,4
Chrom	5,0
Mangan	0,4
Molybdän	1,2
Silicium	1,0
Vanadium	1,0

Beständig geg	en thermische Ermüdun
Härtbar	
Hohe Verschl	eißfestigkeit und Zähigke
Variable Eige Wärmebehan	nschaften durch dlungen

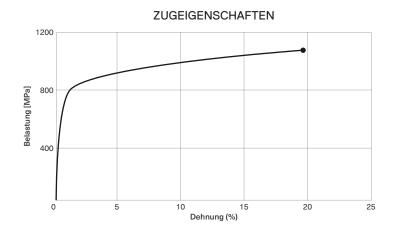
*Zugehörige Normen und Bezeichnungen: AISI H13, ASTM A681, 1.2344 / X40CrMoV5-1, UNS T20813, JIS G4404 SKD61

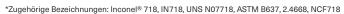
^{*} H=Härten, V=Vergüten Die Endeigenschaften hängen von den Bedingungen der Wärmebehandlung ab.

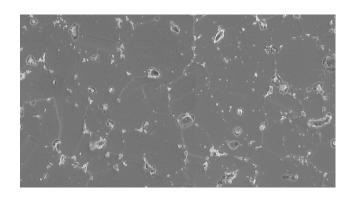

IN718

NICKEL-SUPERLEGIERUNG

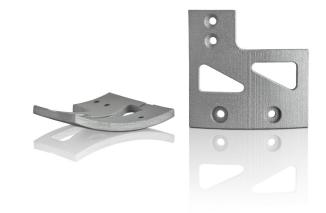
IN718 ist eine hochleistungsfähige Superlegierung auf Nickelbasis mit ausgezeichneter Festigkeit und guter Korrosionsbeständigkeit bei hohen Temperaturen.


Das Material ist fester und härter als IN625, hat aber eine geringere Korrosionsbeständigkeit und kann nur bei niedrigeren Temperaturen eingesetzt werden.


IN718-Legierungen werden häufig in der Luft- und Raumfahrt eingesetzt, etwa für Turbinen, Raumfahrzeuge, Raketentriebwerke, Turbopumpen und Werkzeugbau.


A	0.V.d., 0. K.d., .l.b.,
digkeit bei hohen	Stärke & Kriechbestän- Temperaturen
Gute Korrosions	beständigkeit
Ausgezeichnete	Schweißbarkeit
Wärmebehande	lbar

Physikalische Eigenschaften	Wie gesintert
Spezifische Zugfestigkeit [MPa]	1000
Streckfestigkeit (MPa)	700
Dehnung [%]	15
Härte [HRC]	34
Relative Dichte [%]	98



Ti-6AI-4V

TITANLEGIERUNG

Ti-6Al-4V ist eine Titanlegierung, die hohe Festigkeit, Härte und Duktilität mit hoher Korrosionsbeständigkeit verbindet. Das Material hat fast die Festigkeit von Stahl und ist gleichzeitig 45 % leichter, was zu einem der besten Verhältnisse zwischen Festigkeit und Gewicht bei der Herstellung von Materialien führt.

Am häufigsten wird Ti-6Al-4V in der Luft- und Raumfahrt eingesetzt, aber auch in der Schifffahrts-, Automobil-, Energie-, Chemie- und biomedizinischen Industrie findet es Verwendung.

Zusammensetzung	Gewicht in %	
Titan	Rest	
Aluminium	6	
Vanadium	4	
Kohlenstoff	0,05	
Stickstoff	0,01	
Sauerstoff	0,26	

Hoho Eog	stigkeit und Härte
TIONE LES	stigkeit und Harte
Ausgezei	chnete Korrosionsbeständigkeit
Bestes Ve	erhältnis von Stärke zu Gewicht Klasse

Physikalische Eigenschaften	Wie gesintert	Wie Heißisostatisches Pressen*
Spezifische Zugfestigkeit [MPa]	890	1050
Streckfestigkeit (MPa)	790	940
Dehnung [%]	8	10
Härte [HRC]	25	55
Relative Dichte [%]	95	>15

^{*}Heißisostatisches Pressen

