
## Copper

Copper is a soft, ductile metal used primarily for its electrical and thermal conductivity. Copper's high conductivity makes it an ideal material for many heat sinks and heat exchangers, power distribution components such as bus bars, manufacturing equipment including spot welding shanks, antennae for RF communications, and more. The ability to print pure copper using Metal X enables geometrically optimized parts that were previously expensive, time consuming, or impossible to make.

| Composition | Amount<br>99.8% min |  |  |
|-------------|---------------------|--|--|
| Copper      |                     |  |  |
| Oxygen      | 0.05% max           |  |  |
| Iron        | 0.05% max           |  |  |
| Other       | bal                 |  |  |



| Typical Mechanical Properties    | Markforged                |           |                             |                            |  |
|----------------------------------|---------------------------|-----------|-----------------------------|----------------------------|--|
|                                  | Standard                  | Temp      | As-Sintered                 | MIM Standard               |  |
| Ultimate Tensile Strength        | ASTM E8                   | Room Temp | 193 MPa <sup>1</sup>        | 207 MPa                    |  |
| 0.2% Tensile Yield Strength      | ASTM E8                   | Room Temp | 26 MPa <sup>1</sup>         | 69 MPa                     |  |
| Elongation at Break              | ASTM E8                   | Room Temp | 45%¹                        | 30%                        |  |
| Relative Density                 | ASTM B923                 | Room Temp | 98%²                        | 98%                        |  |
| Electrical Conductivity          | ASTM E1004                | Room Temp | 84% IACS <sup>3</sup>       | _                          |  |
| Thermal Conductivity             | ASTM E1461                | Room Temp | 350 W/mK⁴                   | 328 W/mK                   |  |
| Coefficient of Thermal Expansion | ASTM E831-19 <sup>5</sup> | 68-100°F  | 9.6 x 10 <sup>-6</sup> /°F  | 8.7 x 10 <sup>-6</sup> /°F |  |
|                                  | ASTM E228                 | 68-150°F  | 9.7 x 10 <sup>-6</sup> /°F  | 8.9 x 10 <sup>-6</sup> /°F |  |
|                                  |                           | 68-200°F  | 9.8 x 10 <sup>-6</sup> /°F  | 9.1 x 10 <sup>-6</sup> /°F |  |
|                                  |                           | 68-250°F  | 9.9 x 10 <sup>-6</sup> /°F  | 9.3 x 10 <sup>-6</sup> /°F |  |
|                                  |                           | 68-300°F  | 10.0 x 10 <sup>-6</sup> /°F | 9.4 x 10 <sup>-6</sup> /°F |  |
|                                  |                           | 68-500°F  | 10.1 x 10 <sup>-6</sup> /°F | _                          |  |
|                                  |                           | 68-750°F  | 10.5 x 10 <sup>-6</sup> /°F | _                          |  |
|                                  |                           |           |                             |                            |  |

<sup>1.</sup> Tensile bars are sub-sized and are sliced with default copper settings except raft is turned off. Copper defaults to solid parts.

These data represent typical values for Markforged Copper as-sintered. Markforged samples were printed with Solid Infill setting. All values based on 3rd party testing except for relative density which was tested by Markforged. These representative data were tested, measured, and calculated using standard methods and are subject to change without notice. Markforged makes no warranties of any kind, express or implied.

<sup>2.</sup> Density is based on a theoretical value of 8.96g/cc.

<sup>3.</sup> Electrical conductivity, when evaluated with eddy current instruments, is usually expressed as a percentage of the conductivity of the International Annealed Copper Standard (% IACS). The conductivity of the Annealed Copper Standard is defined to be 0.58 × 108 S/m (100 % IACS) at 20°C.

<sup>4.</sup> Thermal diffusivity measured per ASTM E1461. Diffusivity was converted to Conductivity using, Thermal Conductivity = Thermal Diffusivity \* Density \* Specific Heat. Assuming specific heat of Copper = 0.385 J/g-K per "Handbook of Chemistry and Physics 72nd Edition."

<sup>5.</sup> Markforged as-sintered Coefficient of Thermal Expansion (CTE) was measured by a 3rd party lab using Thermal Mechanical Analysis (ASTM E831). The MIM handbook reference used a Push Rod Dilatometer (ASTM E228)